Refine Your Search

Topic

Search Results

Standard

Hardness Tests and Hardness Number Conversions

2018-01-10
CURRENT
J417_201801
This report lists approximate hardness conversion values; test methods for Vickers Hardness, Brinell Hardness, Rockwell Hardness Rockwell Superficial Hardness, Shore Hardness; and information regarding surface preparation, specimen thickness, effect of curved surfaces, and recommendations for Rockwell surface hardness testing for case hardened parts. The tables in this report give the approximate relationship of Vickers Brinell, Rockwell, and Scleroscope hardness values and corresponding approximate tensile strengths of steels. It is impossible to give exact relationships because of the inevitable influence of size, mass, composition, and method of heat treatment. Where more precise conversions are required, they should be developed specially for each steel composition, heat treatment, and part.
Standard

HARDNESS TESTS AND HARDNESS NUMBER CONVERSIONS

1983-12-01
HISTORICAL
J417_198312
This report lists approximate hardness conversion values; test methods for Vickers Hardness, Brinell Hardness, Rockwell Hardness Rockwell Superficial Hardness, Shore Hardness; and information regarding surface preparation, specimen thickness, effect of curved surfaces, and recommendations for Rockwell surface hardness testing for case hardened parts. The tables in this report give the approximate relationship of Vickers Brinell, Rockwell, and Scleroscope hardness values and corresponding approximate tensile strengths of steels. It is impossible to give exact relationships because of the inevitable influence of size, mass, composition, and method of heat treatment. Where more precise conversions are required, they should be developed specially for each steel composition, heat treatment, and part.
Standard

MICROSCOPIC DETERMINATION OF INCLUSIONS IN STEELS

1983-12-01
HISTORICAL
J422_198312
This recommended microscopic practice for evaluating the inclusion content in steel has been developed as a practical method of quantitatively determining the degree of cleanliness of steel. This method has been established as a reasonable control for steel mill operations and acceptance for production manufacturing. It has been widely accepted for carbon and alloy steel bars, billets, and slabs. Exceptions are resulfurized grades which are outside the limits of these photomicrographs and the high carbon bearing quality steels which are generally classified using ASTM E 45-60T, Method A, Jernkontoret Charts.
Standard

GENERAL DATA ON WROUGHT ALUMINUM ALLOYS

1991-02-01
HISTORICAL
J454_199102
The SAE Standards for wrought aluminum alloys cover materials with a considerable range of properties and other characteristics, but do not include all of the commercially available materials. If none of the materials listed in Tables 1 through 7 provides the characteristics required by a particular application, users may find it helpful to consult with the suppliers of aluminum alloy products. See companion document, SAE J1434.
Standard

General Data on Wrought Aluminum Alloys

2018-01-09
CURRENT
J454_201801
The SAE Standards for wrought aluminum alloys cover materials with a considerable range of properties and other characteristics, but do not include all of the commercially available materials. If none of the materials listed in Tables 1 through 7 provides the characteristics required by a particular application, users may find it helpful to consult with the suppliers of aluminum alloy products. See companion document, SAE J1434.
Standard

Methods of Measuring Case Depth

2023-05-22
CURRENT
J423_202305
Case hardening may be defined as a process for hardening a ferrous material in such a manner that the surface layer, known as the case, is substantially harder than the remaining material, known as the core. The process embraces carburizing, nitriding, carbonitriding, cyaniding, induction, and flame hardening. In every instance, chemical composition, mechanical properties, or both are affected by such practice. This testing procedure describes various methods for measuring the depth to which change has been made in either chemical composition or mechanical properties. Each procedure has its own area of application established through proved practice, and no single method is advocated for all purposes. Methods employed for determining the depth of case are either chemical, mechanical, or visual, and the specimens or parts may be subjected to the described test either in the soft or hardened condition.
Standard

General Information - Chemical Compositions, Mechanical and Physical Properties of SAE Aluminum Casting Alloys

2018-01-10
CURRENT
J452_201801
The SAE Standards for aluminum casting alloys cover a wide range of castings for general and special use, but do not include all the alloys in commercial use. Over the years, aluminum alloys have been identified by many numbering systems as shown in Table 1. Presently, SAE is recommending the use of the UNS Numbering System to identify these materials. The castings are made principally by sand cast, permanent mold, or die cast methods; however, shell molding, investment casting, plaster cast, and other less common foundry methods may also be used. If the alloys listed do not have the desired characteristics, it is recommended that the manufacturers of aluminum castings be consulted.
Standard

General Information—Chemical Compositions, Mechanical and Physical Properties of SAE Aluminum Casting Alloys

2003-12-01
HISTORICAL
J452_200312
The SAE Standards for aluminum casting alloys cover a wide range of castings for general and special use, but do not include all the alloys in commercial use. Over the years, aluminum alloys have been identified by many numbering systems as shown in Table 1. Presently, SAE is recommending the use of the UNS Numbering System to identify these materials. The castings are made principally by sand cast, permanent mold, or die cast methods; however, shell molding, investment casting, plaster cast, and other less common foundry methods may also be used. If the alloys listed do not have the desired characteristics, it is recommended that the manufacturers of aluminum castings be consulted.
Standard

GENERAL INFORMATION—CHEMICAL COMPOSITIONS, MECHANICAL AND PHYSICAL PROPERTIES OF SAE ALUMINUM CASTING ALLOYS

1989-01-01
HISTORICAL
J452_198901
The SAE Standards for aluminum casting alloys cover a wide range of castings for general and special use, but do not include all the alloys in commercial use. Over the years, aluminum alloys have been identified by many numbering systems as shown in Table 1. Presently, SAE is recommending the use of the UNS Numbering System to identify these materials. The castings are made principally by sand cast, permanent mold, or die cast methods; however, shell molding, investment casting, plaster cast, and other less common foundry methods may also be used. If the alloys listed do not have the desired characteristics, it is recommended that the manufacturers of aluminum castings be consulted.
Standard

Automotive Gray Iron Castings

2000-12-06
HISTORICAL
J431_200012
This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries. Specific requirements are provided for hardness of castings. Test bar tensile strength/Brinell hardness (t/h) ratio requirements are provided to establish a consistent tensile strength-hardness relationship for each grade to facilitate prediction and control of tensile strength in castings. Provision is made for specification of special additional requirements of gray iron automotive castings where needed for particular applications and service conditions. NOTE—This document was revised in 1993 to provide grade specific t/h control. In 1999 the document was revised to make SI metric units primary.
Standard

Automotive Gray Iron Castings

2018-01-09
CURRENT
J431_201801
This SAE Standard covers the hardness, tensile strength, and microstructure and special requirements of gray iron sand molded castings used in the automotive and allied industries. Specific requirements are provided for hardness of castings. Test bar tensile strength/Brinell hardness (t/h) ratio requirements are provided to establish a consistent tensile strength-hardness relationship for each grade to facilitate prediction and control of tensile strength in castings. Provision is made for specification of special additional requirements of gray iron automotive castings where needed for particular applications and service conditions. NOTE—This document was revised in 1993 to provide grade specific t/h control. In 1999 the document was revised to make SI metric units primary.
Standard

Categorization and Properties of Dent Resistant, High Strength, and Ultra High Strength Automotive Sheet Steel

2017-03-22
CURRENT
J2340_201703
This SAE Recommended Practice defines and establishes mechanical property ranges for seven grades of continuously cast high strength automotive sheet steels that can be formed, welded, assembled, and painted in automotive manufacturing processes. The grade of steel specified for an identified part should be based on part requirements (configuration and strength) as well as formability. Material selection should also take into consideration the amount of strain induced by forming and the impact strain has on the strength achieved in the finished part. These steels can be specified as hot-rolled sheet, cold-reduced sheet, uncoated, or coated by hot dipping, electroplating, or vapor deposition of zinc, aluminum, and organic compounds normally applied by coil coating. The grades and strength levels are achieved through chemical composition and special processing. Not all combinations of strength and coating types may be commercially available. Consult your steel supplier for details.
Standard

Wrought Copper and Copper Alloys

2018-01-10
CURRENT
J463_201801
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

Wrought copper and Copper Alloys

2002-12-20
HISTORICAL
J463_200212
This standard1 describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
Standard

WROUGHT COPPER AND COPPER ALLOYS

1976-06-01
HISTORICAL
J463D_197606
This standard* describes the chemical, mechanical, and dimensional requirements for a wide range of wrought copper and copper alloys used in the automotive and related industries.
X